High-Speed MARS Hardware

A. Satoh N. Ooba K. Takano E. D'Avignon

IBM

Contents

- MARS Hardware Architecture
- Performance Evaluation
- Conclusions

IRM

Hardware Architecture

- Forward / backward mixing
 - 3-port (1-write, 2-read) SRAM is used for S-box
 - Critical path contains 2 adders, S-box, XOR, and selectors
 - 9 cycles for each mixing

Hardware Architecture

- Cryptographic core
 - S-box is shared by forward/backward mixer
 - S-box read and multiplication are executed simultaneously
 - Critical path contains multiplier, adder, XORs rotator, and selectors
 - 16cycles

Hardware Architecture

- Pipelined Operation
 - Cryptographic core and forward/backward mixer can operate simultaneously with 4-port SRAM S-box
 - Pipelined operation takes 18 cycles
 - Non-pipelined operations take 34 cycles

Hardware Architecture

- High Speed Adder
 - Divide into ripple-carry adder blocks
 - Carry skips from block to block
 - Balance carry-propagation and block-internal delays
 - Adder outputs **z** immediately firm when carry reaches

Performance Evaluation

- Custom MARS multiplier using carry-skip technique
- 0.18-µm CMOS standard cell technology
- High-speed
 - Carry Skip: 2.32ns (nominal) 3.41ns (worst)
 - CLA: 2.57ns (nominal) 3.82ns (worst)
- Compact
 - Carry Skip + Wallace : 3.2Kgates
 - CLA + Wallace : 3.5Kgates

Performance Evaluation

- Total circuit size is 13.8Kgates+2.25Kbyte memory
- Throughput varies with S-box memory configuration
 - 4-port SRAM: forward/backward mixer (18 cycles) and cryptographic core (16 cycles) run simultaneously
 - 3-port SRAM : 34 cycles = f/b mixer (18) + c-core (16)
 - 1-port SRAM : 50 cycles = f/b mixer (34) + c-core (16)
 - ROM: 50 cycles. Lower operation frequency

Circuit Block	Gate Size
Key Expansion	2.2K
Enc / Dec Controller	4.5K
Enc / Dec Data Path	6.1K
Interface + Mem Controller	1.0K
Total	13.8K

Function	Туре	Gate Size
Key Register	3-port SRAM	6.8K
(256bytes)	2-port SRAM	4.8K
S-box (2Kbytes)	4-port SRAM	46.2K
	3-port SRAM	30.8K
	1-port SRAM	15.4K
	ROM	6.3K

Performance Evaluation

- 1.28 Gbit/sec for non-feedback cipher modes
- 677 Mbit/sec feedback cipher modes

Conclusions

- 1.28Gbit/s is achieved by introducing high-speed adder and multiplier
- 13.8Kgats + 2.25Kbytes memory
- Future security is primary consideration
 - AES must resist any attacks over 20 years
 - Semiconductor technology is improved rapidly

×4 per 3years

IBM